Чтобы приступить к математическому анализу криптографии, необходимо ввести удовлетворительную идеализацию и определить математически приемлемым способом, что будет пониматься под термином секретная система. Схематическая структура секретной системы показана на рис.1.Рис.1. Схема общей секретной системы. На передающем конце имеются два источника информации - источник сообщений и источник ключей. Источник ключей отбирает конкретный ключ среди всех возможных ключей данной системы. Этот ключ передается некоторым способом на приемный конец, причем предполагается, что его нельзя перехватить (например, ключ передается посыльным). Источник сообщений формирует некоторое сообщение (незашифрованное), которое затем зашифровывается, и готовая криптограмма передается на приемный конец, причем криптограмма может быть перехвачена (например, пересылается по радио). На приемном конце шифровальщик с помощью ключа по криптограмме восстанавливает исходное сообщение.
Очевидно, шифровальщик на передающем конце выполняет некоторую функциональную операцию. Если M - сообщение, K - ключ и E - зашифрованное сообщение (криптограмма), то имеемE = f(M, K),т. е. E является функцией от M и K. Удобнее, однако, понимать E не как функцию двух переменных, а как (однопараметрическое) семейство операций или отображений, и записывать его в виде:E = TiM. Отображение Ti примененное к сообщению M, дает криптограмму E. Индекс i соответствует конкретному используемому ключу. Вообще мы будем предполагать, что имеется лишь конечное число возможных ключей, каждому из которых соответствует вероятность pi. Таким образом, источник ключей является статистическим процессом, или устройством, которое выбирает одно из множества отображений T1,...,Tm с вероятностями p1,...,pm соответственно. Будем также предполагать, что число возможных сообщений конечно и эти сообщения M1,...,Mn имеют априорные вероятности q1,...,qn. Например, возможными сообщениями могли бы быть всевозможные последовательности английских букв, включающих по N букв каждая, а соответствующими вероятностями тогда были бы относительные частоты появления таких последовательностей в нормативном английском тексте. Должна иметься возможность восстанавливать M на приемном конце, когда известны E и K . Поэтому отображение Ti , из нашего семейства должно иметь единственное обратное отображение Ti -1, так что TiTi -1 = I , где I - тождественное отображение. Таким образом:M = Ti -1 EВо всяком случае, это обратное отображение Ti-1 должно существовать и быть единственным для каждого E, которое может быть получено из M с помощью ключа i. Приходим, таким образом, к следующему определению: секретная система есть семейство однозначно обратимых отображений Ti множества возможных сообщений во множество криптограмм, при этом отображение Ti имеет вероятность pi. Обратно, любое множество объектов такого типа будет называться "секретной системой". Множество возможных сообщений для удобства будет называться "пространством сообщений", а множество возможных криптограмм - "пространством криптограмм".Две секретные системы совпадают, если они образованы одним и тем же множеством отображений Ti и одинаковыми пространствами сообщений и криптограмм, причем вероятности ключей в этих системах также совпадают. Секретную систему можно представлять себе как некоторую машину с одним или более переключающими устройствами. Последовательность букв (сообщение) поступает на вход машины, а на выходе ее получается другая последовательность. Конкретное положение переключающих устройств соответствует конкретному используемому ключу. Для выбора ключа из множества возможных ключей должны быть заданы некоторые статистические методы. Для того чтобы нашу проблему можно было рассмотреть математически, предположим, что противнику известна используемая система. Иными словами, он знает семейство отображений Ti и вероятности выбора различных ключей. Можно было бы, во-первых, возразить, что такое предположение нереалистично, так как шифровальщик противника часто не знает, какая система использовалась или чему равны рассматриваемые вероятности. На это возражение имеется два ответа. Наложенное ограничение слабее, чем кажется с первого взгляда, из-за широты нашего определения секретной системы. Предположим, что шифровальщик перехватывает сообщение и не знает, использовалась ли здесь подстановка или транспозиция, или шифр типа Виженера. Он может считать, что сообщение зашифровано с помощью системы, в которой часть ключа является указанием того, какой из трех типов имеющихся ключей был использован, а следующая часть - конкретный ключ этого типа. Указанным трем различным возможностям шифровальщик приписывает вероятности, учитывая при этом все имеющиеся у него сведения об априорных вероятностях использования шифровальщиком противника соответствующих типов шифров. Наше ограничение обычно в криптографических исследованиях. Оно является пессимистичным, но безопасно, и в конечном счете реалистично, так как можно ожидать, что противник рано или поздно раскроет любую секретную систему. Поэтому даже в том случае, когда разработана совершенно новая система, так что противник не может приписать ей никаких априорных вероятностей, если только он ее уже не раскрыл, нужно иметь в виду его возможную осведомленность.
|